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Abstract

To meet the challenge of the future deep-space program, which involves

extended manned space missions, an accurate and efficient engineering code

for analyzing the shielding requirement against the high-energy galactic heavy

ions is needed. The HZETRN is a deterministic code developed at Langley

Research Center that is constantly under improvement both in physics and

numerical computation and is targeted for such use. One problem area con-
nected with the space-marching technique used in this code is the propagation

of the local truncation error. By improving the numerical algorithms for in-

terpoIation, integration, and grid distribution formula, the efficiency of the

code is increased by a factor of eight as the number of energy grid points is re-

duced. The numerical accuracy of better than 2 percent for a shield thickness

of 150 g/cm 2 is found when a _5-point energy grid is used. The propagating
step size, which is related to the perturbation theory, is also reevaluated.

Introduction

As the space program proceeds into an era of

extended manned space operations, the shielding

from galactic heavy ions becomes a problem of ever-

increasing importance (ref. 1). The high-energy

heavy ions originating in deep space interact with
target nuclei resulting in energy degradation and nu-

clear fragmentations. These fragmentations produce

secondary and subsequent-generation reaction prod-
ucts that alter the elemental and isotopic composi-

tion of the transported radiation fields. A realistic

estimate of flux in a critical organ of interest can be

made when the nuclear fragmentation data become

available as inputs to the galactic cosmic ray trans-

port code (HZETRN (ref. 2)), recently developed at
Langley Research Center.

As NASA places efforts on the experimental pro-

gram to produce fragmentation data, the space ra-
diation transport codes including HZETRN arc fur-

ther being improved, refined, and updated to meet

future mission requirements. One such effort is to im-

prove the efficiency and numerical accuracy of these
deterministic codes, such that the codes can easily

bc used as engineering tools and will also accom-

modate future expansion for more sophistication in

physics. Recently, the work on the baryon trans-

port code (BRYNTRN) is an example in this area

(ref. 3). This code, as well as HZETRN, is based on
a space-marching formalism that calls special atten-

tion to the error propagation. An analysis made in

the study (ref. 3) showed that the propagated error

tends to grow with the marching steps to a maxi-
mum, but is proportional to the local error that can

be minimized by improving various numerical algo-

rithms and the grid generation. The results of these

modifications have substantially improved the accu-

racy and efficiency of BRYNTRN.

Because HZETRN calculates the transport of the

galactic heavy ions through target materials, the
number of species and the range of energy considered

in this code are much larger than in BRYNTRN. For

this reason, the benefit from the improvement of nu-

merical computation in HZETRN is expected to be

far greater than in BRYNTRN. In this report, the
description and testing of the changes to tile compu-

tational procedures in HZETRN as well as heavy-ion

transport theory are presented. Tile improvements

in efficiency and accuracy are also evaluated.

Galactic Cosmic Ray Transport Method

Galactic Cosmic Ray Transport Theory

In moving through extended matter, heavy ions

lose energy through interaction with atomic electrons

along their trajectories. On occasion, they interact

violently with nuclei of thc matter, producing ion

fragments moving in the forward direction and low-
energy fragments of the struck target nucleus. The

transport equations for the short-range target frag-
ments can be solved in closed form in terms of colli-

sion density (ref. 4). Hence, the projectile fragment
transport is the interesting unsolved problem. In pre-

vious work, the projectile ion fragments were treated

as if all went straight ahead (ref. 5). The straight-

ahead approximation is found to be quite accurate
for the nearly isotropic cosmic ray fluence (ref. 4).



With the straight-aheadapproximationandthetargetsecondaryfragmentsneglected(refs.4 and5), the
transportequationmaybewrittenas

k>j

where _d(x, E) is the flux of ions of type j with atomic mass Aj at x moving ahmg the x-axis at energy E in

units of MeV/amu, _rj is tile corresponding macroscopic nuclear absorption cross section, Sa (E) is the change

in E per unit distance, and mjk is tile multiplicity of ion j produced in collision by ion k. The corresponding

nucleon transport equation (refs. 3, 6, and 7) is

[0 0 ] /?OE)O(E)+ j(E) dE'
k

(2)

Tile mjk, crj are assumed energy independent in equation (1) and the full energy dependence is retained in

equation (2). The solution to equations (1) and (2) is to be found subject to boundary specification at x = 0

and arbitrary E as

_,j (0, E) = Fj (E) (3)

Usually Fj (E) is called the incident beam spectrum.

It follows from Bethe's theory (ref. 8) that

Sj(E)- AjZ_Sp(E)
(4)

and holds for all energies above 100 keV/amu provided the ions remain fully stripped. The range of the ion is

given as

9_0E dE_nj(E) : Sa (E') (5)

It follows that

2_ Z2 Rp(E) (6)
A-_Rj(E) =

The subscript p refers to proton. Equation (6) is quite accurate at high energy and only approximately true at

low energy because of electron capture by the ion that effectively reduces its charge (ref. 9), higher order Born

corrections to Bethe's theory (ref. 10), and nuclear stopping at the lowest energies (refs. 11 and 12). Herein,

the parameter uj is defined as

_,jRj(E) = Uknk(E) (7)

so that

Equations (6) to (8) are used in the subsequent, development and the energy variation in uj is neglected.

A method of solution is now discussed. For the purpose of solving equation (1), define the coordinates

(8)

2

(9)

(10)



where rlj varies along the particle path and _j is constant along the particle trajectory.
functions are taken as

x_(,j, _j) = _j(E)¢j(z, E) = ¢_(z, rj)

wherc

_k(,j, _j) -=Xk(,k,¢k)

_j -4-rlj = _k 4- 77k

"A(Vk- G)

and rj = Rj(E). Under this coordinate mapping, equation (1) becomes

Tile new fluence

(11)

(12)

(13)

(14)

[20@j q-aj] Xd(rlj,_j)= _-_rnjkc_k uJ y(k(rlj,_j) (15)
k Vk

where (rj are assumed to be energy independent. There is a small variation in aj (_20 percent), which nmst
eventually be taken into account. Solving equation (15) by using line integration with an integrating factor

(16)

results in

where

Xj(rlj,_j)=exp [-l oj(_j-l-t]j)] Xj(-_j,_j)

lf_J [_ ] l/j+ _ _Joxp a_(,'-.5) _2_._jk_k
! !

Xk(rlk , _k) d_l' (17)

uk - uj _, uk - ujr/ Vk + ujr/ -- uk + uj r/+ _j and -- + _j
k 2u k 2_ k k 2u k 2_ k

With equation (11) one may show

(18)

Furthermore, it is easy to show that

f0h (
k Uk ]

(19)

where h is the step size in the x direction.

It is clear from equation (18) that

¢i(x 4 h - z, ,k) = e-°k(h-_) ek(x, rk + h) + O(h - z) (20)

which upon substitution into equation (19) yields

Cj(X q- h, rj) = e -ajh _j(x, rj q- h) q- j_Oh dz e_ajz E rnjk ak uj e_ak(h_z) _k(x,r k+ UJ z +h- z) (21)
k Uk _k ,

3



whichiscorrectto orderh 2. This expression may be further approximated by

Cj(x + h, rj) = e- J h Cj(x, rj +h) - jk
k uk \ ak aj Uk /

(22)

which is accurate to O[(v k - uj)h]. Equation (22) is the basis of the galactic cosmic ray (GCR) transport

codc GCRTRN (refs. 13 to 15). A few years ago, GCRTRN and the baryon transport code (BRYNTRN) were

coupled together as a new code (HZETRN) which effectively solves equation (2) by adding a heavy ion collision

source of nucleons to the right-hand side of the equation. Equation (22) provides the propagating algorithm

for the heavy ions. The corresponding propagating procedure for the nucleons is given as (refs. 3 and 6)

h L_b(x + h, r) _ e-ah¢(x, r + h) + e -ah dz drt_f(r + z, rt + z) ¢(x, r' + h) (23)

with the order of h 2.

There are several quantities of interest that are now given. The integral fluence is given as

¢j(x,>E) = _bj(x,r) dr
j(E)

(24)

The energy absorption per gram is

Dj(x, > E) = AjCj[x, Rj(E)] dE (25)

with the dose equivalent given as

Hj (x, > E) = Aj QFCj [x, Rj (E)] dE (26)

where QF is the quality factor. These quantities are used in shield design studies for protection against galactic

cosmic rays.

Numerical Procedure

The secondary particle production term of the propagation algorithm for nucleons in equation (23) has been
further reduced to a form that can be implemented with ease for numerical integration. The details of the

form and its validity have been discussed elsewhere (ref. 6) and will not be repeated here. For the heavy ions,

the secondary production term (the second term on the right side of eq. (22)) does not involve any integration;

however, the interpolation of the transformed fluence function is based on the independent variable rk, which is

different from rj, the range of ions of type j given at the left side of the equation. To circumvent the problem,

the equation is further modified. Recall the definition of Sj (E) with E given in units of MeV/amu

Sj(E) = Sj(Ej/Aj) - A(Ej/Aj) 1 AEj _ I
Ax Aj Ax Aj Sj (Ej) (27)

with

Sj(Ej) = Z_ Sp(Ej/Aj)

where Sp is the proton stopping power and Ej is the energy in MeV of ions of type j. It follows that

(28)

_3j(E) = 1 2 Sp(Ej/Aj) vjSp(Ep)
A----_Z_ =-

(29)
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where
(30)

Rewritingequation(11)as
Ep = Ej/&

Cj(x, rj) -- _j(E) ¢j(x, E) -- .j Sp(E) ¢_(x, E) (31)

we can define the new fluence function

_(_, r) - .j G(E) ¢(x, E) - Cj(_,rj) (32)

with r = rp = vj r j, where

fo E dE'_ = &-(_,)

Equation (22) now becomes

(e-aJh--e -_kh) uk _lk(x,_}(x+h,r)=e-ajh_}(x,r+t_jh)+Z rnjk ak ---- __
k \ Crk -- crj fly

(33)

r + ujh) (34)

so that there is only one single definition of range that is related to energy. The equation can now be solved

by setting up the r (proton range) grid and marching the solution from x = 0 by steps of h to the desired

thickness.

Error Propagation

In considering how errors are propagated in the use of equation (34), tile error is introduced locally by

calculating _.(x,r + ujh) over the range (energy) grid. Limiting our current analysis to the first term of
equation (34), it is defined at each range grid ri that

¢}(_ + h,_d = e-_jh ,_(z, _ + _jh) (35)

We denote the truncation error ei introduced in the interpolation proccdure to the interpolated value, _bjint ,

as

_j(x,r i' + ujh) = qJjint(' x, r i + ujh) + ei(h) (36)

After the mth step from the boundary the numerical solution is

rn 1

¢}(mh, ri) =e-ajh ¢_int [(rn- 1)h, ri + ujh] + Z e-crJ(m-g)heg(h) (37")
g=0

Suppose 0 < eg(h) _< e(h) for all g then the propagated error is bound by

m-1 m-1

eprp(m) = Z e-aj(m-g)hef(h) <- e(h) Z e-aJ(m-g)h (38)
g=0 g=0

We note that
m-i

e=0 ha j

because haj << 1. Clearly the propagated error on the ruth step is bound by

(39)

¢(h) [1-e-aJ mh]
¢prp(h) <

(40)



where e(h) is tile maximum error per step. With the

increasing value of m, the propagated error grows

each step to a maximum value of e(h)/haj. Because
the increase of h value is limited by the perturbation

theory, reducing the local truncation error is the only

viable approach left for reducing the propagated error

to a desired level. The same consideration may be

applied for the second term of equation (34), as the
terms arc of similar nature.

Numerical Algorithms

The error analysis shown in the previous section

has concluded that to effectively reduce the level of

propagated error, the local truncated error must bc

reduced. There arc three basic numerical algorithms

that are involved in solving equations (23) to (26) and
(34): interpolation, integration, and grid generation.
Thc integration scheme does not affect tile error

propagation for the heavy-ion transport, but does
affect the nucleons and the dose calculations. The

choice of a grid distribution that is interrelated to
the interpolation and integration scheme can increase

the efficiency of the code if the number of grids can
be reduced.

Tile interpolation scheme to bc used here is the

third-order Lagrangc method as used successfully in

the work for improving BRYNTRN (rcf. 3). With

tile four neighboring interpolating grids (data points)
placed evenly on both sides of tile interpolated point,
thc error will tend to be the smallest in the middle

interval of all the data points if the grid distribution

is rather uniform (ref. 16). The choice of a much

higher order Lagrange method will substantially de-
crease the efficiency of the code, because there are

more than 10 interpolation calls for each single en-

ergy point at each step. Other interpolation methods
such as a cubic spline were considcrcd but discarded.

The splines are, in general, more accurate. However,

their characteristic large excursions (oscillations) can
result in erroneous, unpredictable solutions.

Tile same procedure for numerical integration

used for the improved BRY-NTRN (rcf. 3) will also
be used here for HZETRN. It is based on the com-

pound quadrature formulation summing over all the

subintervals between the grids with the midpoint

cvahmted by making use of the improved interpola-
tion procedure mentioned above. A simple numerical

method such as Simpson's rule is used to integrate for
the subintervals.

Therc arc three binding conditions that dictate
how the grids should be distributed. Tile first is the

shape of the input spectrum. Because the galactic
cosmic ray fluenccs are several orders of magnitude

larger at the lower energy end (ref. 17), the loga-

rithmic scale will be used for tile energy or range
coordinate as was done in reference 3. The second

condition is related to the choice of the interpolation

method that requires the four neighboring grids to

be as uniformly spaced (on logarithm scale) as possi-
ble so that the interpolation error can be minimized.

Because the interpolation is performed on the range
grid rather than on the energy grid, a uniform grid

distribution on a logarithm of range r is desired. The

third is related to the efficiency of the code that is

found to increase ahnost quadratically with the de-"

crease of grid points. With the uniform grid points
on logarithm r scale as the basic structure, the distri-
bution can further be modified to reduce the number

of points in the region in which the information is not

propagating through the steps. For BRYNTRN, it is

the region below rmi n -t- h, or approximately 1 g/cm 2

because rmin << 1 and assuming h = 1 g/cm 2 (ref. 3).

The same applies for HZETRN, although the inter-

polation is now at rmi n + r,jh, where uj is always
equal to or much greater than 1.

Results and Discussion

In a previous study (ref. 3), the new grid distribu-

tion with the number of grid points N equals 30 was
found satisfactory for BRYNTRN, with the calcu-

lated dose of 5 percent accuracy for a shield thickness

of 150 g/cm 2. Because the galactic cosmic rays are

much harder than the solar flare protons, the upper
limit of the energy range is usually taken to be about

50 GcV as compared with a few GcV for solar pro-

tons. Thus, more grid points are used for HZETRN.
Tests were performed to determine the differences bc-

twcen the interpolated g,_(0, r + v2h ) and the analyt-
ical results using the new interpolation method and

grid distribution with N = 45, for all the j's and k's

where j < k. Samples of thc results are displaycd in
figures 1 to 6. The overall error has bccn found to bc

less than 0.2 percent, with the particular grid gener-

ation formula purposely adjusted so that the larger

errors are absorbed at the low-energy region for r less

than rmi n + _,jh, where h = 1 g/cm 2. The errors re-
ported here are far less than the interpolation error
rcportcd in rcfcrence 3 for BRYNTRN.

To test the convergence of the solution from the

improved HZETRN (including the new integration
procedure), the absorbed doses in tissue behind var-

ious thicknesses of aluminum shield exposed to the

galactic cosmic rays at solar minimum are calculated

with N = 45, 60, and 90. The shield thickness

is varied up to 150 g/cm 2 as indicated in figure 7.

The doses from the heavy ions decrease significantly

through the shield as they are fragmented by the
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targetnuclei.Thedosesfromthe nucleonsincrease
rapidlyto amaximumasa resultof suchfragmenta-
tionandthengraduallydecrease.Therelativeerrors
in theabsorbeddosefor45gridsor60gridscompared
with thedosefor 90gridsareplottedin figures8(a)
and8(b). Theerror for the protondoseincreases
with theshieldthickness(seefig. 8(a)) aswasex-
pectedfromtheanalysisof errorpropagation.There
issomeindicationof oscillationfortheneutroncom-
ponent(seefig. 8(b)),whichwaspointedoutearlier
(ref.3) to be theresultof therapidlyvaryingcross-
sectiondatafor neutronsat lowenergy.Theerrors
for the othercomponentare foundto be insignifi-
cantcomparedwith thosefor thenucleons.Thus,
themaximumerroris 2percentfor45gridsanddc-
creasesto lessthan 1 percentfor 60grids,showing
goodconvergence.

Anotherconvergenceissuethat nccdsto be ad-
dressedis theperturbationtheoryusedin thetrans-
port theory. The perturbationtheory requires
ajh << 1. Because _rj is on the order of 0.01, we usu-

ally take h = 1 g/cm 2. Table 1 shows thc effect

of step size on some of the calculated doses, with

h = 0.5 and 1 g/cm 2. The differences between thesc

two step sizes are insignificantly small, thcreforc,
h = 1 g/cm 2 is retained for HZETRN. The overall

efficiency for this code is improved about eight times

as the grid points are reduccd from 160 to 45, with an

accuracy of 2 percent for the large shicld thickness.
A typical run time for producing the results shown

in figure 7 is about 5000 see on a CYBER 800 series

computer.

Concluding Remarks

The efficiency of HZETRN (a galactic cosmic ray
transport code) has been improved by approximately

a factor of eight. The numerical algorithms for

interpolation, integration, and energy grid generation
were modified such that the number of grid points

needed was reduced from 160 to 45 points. The error

in dose calculation for 45 grid points was determined

to be within 2 percent by a convergence test. The
adequacy of tile step size, which is related to the

perturbation theory, was also examined.

NASA Langley Research Center
Hampton, VA 23665-5225
February 4, 1992
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Table 1. Effect of Step Size on Calculated Doses Through

Various Thicknesses of Aluminum Shield

Aluminum

shield Neutron dose, Gy Proton dose, Gy Alpha particle dose, Gy

thickness, Step size Step size Step size Step size Step size Step size

g/cm 2 = 0.5 g/cm 2 = 1 g/cm 2 = 0.5 g/cm 2 = 1 g/cm 2 = 0.5 g/cm 2 = 1 g/cm 2

5 6.3599E-3 6.3315E-3 8.2623E-2 8.2375E-2 2.4349E-2 2.4349E-2

10 1.1232E-2 1.1181E-2 9.1011E-2 9.0682E-2 2.1400E-2 2.1400E-2

15 1.4942E-2 1.4873E-2 9.4520E-2 9.4148E-2 1.8784E-2 1.8784E-2

20 1.7738E-2 1.7655E-2 9.5463E-2 9.5068E-2 1.6499E-2 1.6499E-2
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Figure 7. Calculated absorbed dose components in tissue as function of aluminum shield thickness exposed to
GCR at solar minimum.
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Figure 8. Relative errors in doses compared with those calculated with 90 grid points. Doses are same as in
figure 7.
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